Чем отличается 95 бензин от 95 ultimate



Эволюция двигателей внутреннего сгорания – тема глубокая и многогранная, но мы не будем даже пытаться объять необъятное. Давайте сразу отметим ключевые факты о моторах, которые многие сегодня воспринимают как должное. Прежде всего, современные автомобили демонстрируют невероятные мощностные и динамические показатели при скромном литраже двигателей. Что еще важней, они вышли на новый уровень топливной экономичности и экологичности выхлопа. Все это стало возможным благодаря применению передовых инженерных решений – сложнейших систем прямого впрыска топлива и рециркуляции отработанных газов, многоступенчатых катализаторов и сажевых фильтров, и, конечно же, расширению полномочий управляющей электроники, которая посредством многочисленных датчиков контролирует все этапы формирования и сгорания воздушно-топливной смеси. Однако современный двигатель, как и любая другая высокоточная механика, предъявляет особые требования к качеству горюче-смазочных материалов и, в первую очередь, моторного топлива.

Что же заставляло производителей автомобильной техники совершенствовать свои двигатели? Как ни банально это прозвучит, в первую очередь – это ужесточение требований экологического законодательства, которое закреплено в Женевском Соглашении, впервые утвержденном в 1958 году. Кроме того, основные требования к выбросам вредных веществ автомобилями и двигателями установлены в Правилах ООН № 49 (грузовые автомобили и автобусы), №83 (легковые автомобили и легкие грузовики) и №96 (дизели сельскохозяйственных и лесных тракторов, внедорожных транспортных средств). Именно ужесточение требований к выбросам вредных веществ автотранспортных средств и двигателей побуждало производителей искать все более эффективные решения. Кардинально изменить ситуацию могла только оптимизация процесса сгорания топливовоздушной смеси. В частности, надо было заставить весь её объём воспламениться в максимально короткое время. А здесь была необходима высокая точность дозировки и точность момента впрыскивания. Сделать это можно было, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи.

Наглядный пример – то, как это реализовано в легковых турбодизелях, где сейчас практически повсеместно применяется система прямого впрыска типа common rail. Ее принципиальное отличие от других систем заключается в наличии топливного аккумулятора высокого давления, или как ее еще называют, топливная рампа. Дизельное топливо подается насосом под высоким давлением в эту рампу, а из нее направляется к форсункам. Такая схема обеспечивает массу преимуществ, включая отличное распыление топлива, равномерность подачи топлива вне зависимости от частоты вращения коленвала и высокоточное многократное дозирование в процессе рабочего цикла. А управляющая электроника позволяет регулировать давление и момент начала впрыска в очень широком диапазоне. Все это обеспечивает практически полное сгорание дизельного топлива в цилиндрах и, как следствие, высокую экономичность двигателя и низкую токсичность выхлопа.

Быстродействие системы питания и точность дозировки топлива стали для инженеров-дизелистов ключевыми параметрами. Поэтому на двигателях последнего поколения электрогидравлические форсунки уступили место пьезоэлектрическим, время срабатывания которых составляет 0,1 мс – в 5 раз меньше, чем у предшественников. Кардинально выросло и давление: если в прежние времена рядные ТНВД выдавали не более 600 бар, то системы common rail третьего поколения с пьезофорсунками уже вышли на уровень 2500 бар.

Бензиновые моторы не отстают от дизельных: они тоже прошли долгий путь от карбюраторов до непосредственного впрыска. Здесь эта технология также не нова, но широкое распространение получила лишь в последние 20-30 лет, а сейчас становится все популярнее. Такая система питания дает те же преимущества: это и возможность точной настройки рабочих параметров, и «послойный» впрыск, когда топливо подается в цилиндр несколько раз за такт, и выигрыш в экономичности, и снижение вредных выбросов. Ну а оборотную сторону медали мы уже знаем: повышенные требования к качеству бензина, т. к. форсунки работают в условиях высоких температур и давления и быстро закоксовываются.

Ведь, по сути, форсунка представляет собой достаточно простой электромагнитный клапан игольчатого типа, что предопределяет загрязнение как основную причину его выхода из строя. Форсунка не очень боится механического засорения – фильтры, установленные в топливной магистрали и самой форсунке, успешно отсеивают частицы размером свыше 20 микрон. Гораздо большую опасность представляет загрязнение продуктами сгорания топлива, которые со временем перекрывают распылительные каналы и нарушают нормальную работу игольчатого клапана. На дизельных и бензиновых моторах с прямым впрыском топлива ситуация усугубляется тем, что здесь распылители форсунок выходят в камеру сгорания, а значит, нагреваются они еще быстрее. И нагар формируется уже не только внутри, но и на поверхности распылителей.

Еще одна технология, помимо прямого впрыска, позволившая вывести моторы на новый уровень мощности и экологичности – это наддув. О том, что такое наддув, знают все: это принудительная подача в цилиндр под давлением большего количества воздуха, позволяющая сжечь за один такт большее количество топлива и тем самым повысить мощность мотора при том же рабочем объеме. Зародившись в прошлом веке как инструмент повышения мощности в судовых дизелях, наддув доказал свою эффективность в автоспорте, а затем прочно закрепился в двигателестроении как одна из ключевых технологий. При этом наддув стимулировал развитие не только двигателей, но и топлива для них. Ведь рост давления в камере сгорания в бензиновых двигателях приводит в том числе и к повышению риска детонации, так что современные турбированные двигатели, как правило, требуют бензина с октановым числом не ниже 95.

Итак, наддув, непосредственный впрыск и высокая степень сжатия – это ключевые особенности современных двигателей.

Разумеется, за эти десятилетия эволюционировали не только двигатели, но и топливо. Даже если вспомнить не столь далекое прошлое, то как бензин, так и дизельное топливо были иными. Во-первых, топливо стало другим по компонентному составу. Модернизация большинства НПЗ России, проведенная в последние два десятилетия, позволила как существенно увеличить глубину переработки нефти, так и улучшить качество производимых компонентов, в т. ч. и высокооктановых. В состав бензина теперь повсеместно вовлекаются продукты установок сернокислотного алкилирования, низкотемпературной изомеризации, каталитического и ароматического риформинга, каталитического крекинга (кстати, бензины каталитического и ароматического риформинга и сернокислотного алкилирования обеспечивают получение топлива с октановым числом 95 и выше). Ранее большинства из перечисленных процессов не было в технологических схемах российских НПЗ. Во-вторых, ранее при производстве топлива практически не использовались присадки, а если и использовались, то негативный побочный эффект от их применения перечеркивал выгоду. Сейчас же некоторые эксплуатационные характеристики топлива невозможно достичь только за счет применения технологических процессов/методов производства на НПЗ. Так, для производства того же дизельного топлива на НПЗ используются депрессорно-диспергирующие, цетаноповышающие, противоизносносные и антистатические присадки. При производстве бензина в случае необходимости применяют антиокислительные и октаноповышающие присадки.

Отдельно стоит остановиться на присадках, ведь они также претерпели существенные изменения. Расскажем сначала об эволюции присадки для повышения октанового числа. В прошлом одной из популярных октаноповышающих присадок являлся тетраэтилсвинец. Состав, разработанный в США в 20-е годы прошлого века, был столь же эффективен, сколь и ядовит. Применение этилированного бензина, «улучшенного» с помощью тетраэтилсвинца, приводило к выбросам огромных объемов вредных соединений и накоплению свинца в организме, а люди, работавшие на производствах, массово гибли от отравления. Тем не менее тетраэтилсвинец продержался в массовом производстве бензина до 70-х годов, а полностью запрещен в большинстве стран мира был и вовсе к началу 21 века. Россия ввела запрет на этилированное топливо в конце 2002 года – на тот момент его оборот уже был невелик. Соответственно, все современные бензины, производящиеся в России, являются неэтилированными, а повышение октанового числа достигается другими, более безопасными методами.

Как правило, так называемого «октанофонда» большинства НПЗ сейчас вполне достаточно, чтобы производить товарный бензин без использования каких-либо «сторонних» октаноповышающих компонентов. Дополнительным высокооктановым компонентом, который сейчас повсеместно используется при производстве бензина, является метил-трет-бутиловый эфир (МТБЭ) с октановым числом 115 (МТБЭ является малоопасным веществом). Он применяется, как правило, для выпуска бензина с октановым числом 100 и выше.

Одним из последних требований автопроизводителей стало требование к уровню отложений на важных деталях двигателя (форсунки инжекторов, впускные клапаны). Ведь общеизвестно, что отложения образуются от сгорания любого топлива – это неизбежный процесс. Основное влияние на уровень и скорость образования отложений оказывает именно компонентный состав топлива: чем больше в нем непредельных и ароматических углеводородов, тем быстрее происходит процесс смоло- и нагарообразования на деталях двигателя. Достичь требуемого автопроизводителями уровня отложений невозможно только за счет совершенствования технологий производства на НПЗ. Поэтому улучшение данного эксплуатационного показателя стало возможным только за счет разработки многофункциональных моющих присадок. Поэтому здесь на сцену выходит отдельный класс компонентов топлива: моющие присадки.

Добавить комментарий