Как запустить мотор жесткого диска без плат



КАК ЗАПУСТИТЬ МОТОР HDD без Контроллеров и Транзисторов

Это очень простой способ для запуска моторов от СидиРумов и HDD Жестких дисков . Не требуется ни плат драйверов ни контролеров ни транзисторов !

Многие считают , что схожесть расположения обмоток данного электродвигателя с бесколлекторными электромоторами переменного тока, дает основания запускать такие двигатели используя внешние схемы типа такой .

Только вот выглядит все это уж слишком навороченно и большинство фанатов быстро остывают к такому «бесподобию» и , вместо покупки комплектующих для сборки подобной схемы, покупают готовые китайские решения

Благо стоят эти мини модули даже меньше чем набор полевиков для управления током обмоток.

Считая что Двигатель , вращающий шпиндель жесткого диска (или CD/DVD-ROM) — это обычный синхронный трёхфазный мотор постоянного тока , можно использовать готовые однокристальные драйверы управления, которым к тому же не требуются датчики положения ротора, ведь в роли таких датчиков выступают обмотки двигателя .

Ну, а тем, кто желает показать свои способности в программировании всевозможных контроллеров, есть шанс собрать Драйвер на Ардуино и сопутствующих запчастях

И ВСЁ ТАКИ ! КАК БЕЗ НАВОРОТОВ ЗАПУСТИТЬ МОТОРЧИК HDD ?

В большинстве случаев , запуск делается вовсе не для промышленных самоделок » очень нужная в хозяйсвто «, а просто ради интереса и любопытства. И желания тратить кучу времени на поиск запчастей или программирование вовсе нет охоты.

«К ак запустить моторчик из HDD ( жёсткого диска )?» Многие задаются этим вопросом, и я решил помочь с ответом .
При использовании старых HDD приводов в прикладных целях иногда возникает проблема с тем, что шпиндельный двигатель останавливается через некоторое время после запуска . Есть у них такая «фишка» — если с блока головок не поступают сигналы на микросхему- контроллер , то она запрещает микросхеме-драйверу вращать двигатель . Но это в прикладных цепях! В нашем случае мы обойдемся и без обратных связей и без контроллеров !

Чем отличается HDD привод от мотора «трёх фазного» ? — Тем что в нём есть постоянные магниты! Тут напомню вам, что моторы переменного тока с постоянными магнитами существуют ! =) эти бесщеточные и РЕАЛЬНО бесколлекторные моторчики на постоянных магнитах применяются в самых жестких условиях — СВЧ печах и даже в духовках. (Не знали? Знайте!) и запуск таких моторов вовсе не сложен!

Правда есть у них своя изюмина — они при запуске вращаются в неопределенном направлении — » Как фаза ляжет «, но все равно вращаются и работают.

Вот тут мы и подходим у кульминации и ответу на вопрос КАК ЗАПУСТИТЬ МОТОР HDD ? СМОТРИТЕ — ВСЕ ПЕРЕД ВАШИМИ ГЛАЗАМИ (а еще и послушать можно)

Видео: Как запустить моторчик от жесткого диска без драйверов

Простой лайфхак: Как запустить электродвигатель от старого HDD без электроники

Вскрываем корпус жесткого диска. Тут все не так просто и придется обзавестись специальной, сервисной отверткой.

Разобрав корпус, удаляем плавающие головки. Отвинтим диск от мотора.

Далее мотор отвинчивается снизу и вынимается из корпуса.
Теперь будем припаивать провода. Если из него выходит всего 3 контакта, то просто припаиваем провода как в нашем случае. Если 4, то просто соединяем 2 центральных вместе и также выводим 3 провода.

Припаиваем конденсатор на 3300 мкФ между средним и любым другим проводом. В дальнейшем вместо одного конденсатора нужно использовать два одинаковых, включенных встречно-последовательно, так как напряжение переменное.

К крайним выводам подключаем переменное напряжение с трансформатора 8 В 50 Гц. В принципе мотор начинает работать от 3 В.

На этом все, двигатель начинает крутиться.

Конечно его скорость нетакая как от электронного драйвера, но все же нормальная, чтобы использовать его в деле. Так как решающим фактором для вращения является частота, то повышение напряжение на увеличение оборотов двигателя не влияет.
Подобным методом можно запустить и шаговый двигатель —

Схемные особенности

Устройство выполнено по схеме 3-фазного мультивибратора на полевых транзисторах с изолированным затвором, отдельные однотранзисторные каскады которого имеют идентичную структуру и соединены в кольцо. Каждый предыдущий каскад такого кольца управляет функционированием транзистора последующего. Стоки транзисторов соединены с обмотками двигателя напрямую.

Время нахождения транзисторов схемы в активном состоянии определяется последовательной RC-цепочкой, напряжение со средней точки которой подается на затвор.

Принципиальная схема устройства представлена на рисунке.

Транзисторы снабжены пластинчатым радиатором, который имеет прямую гальваническую связь со стоком. С учетом невысокой мощности управляемого бесколлекторного электродвигателя необходимость фиксации радиатора на корпусе с низким тепловым сопротивлением отсутствует. Цоколевка и рекомендуемое при сборке направление изгиба выводов представлены на рисунке.

Запуск старых HDD для прикладных применений

Всё началось с того, что привезли несколько старых винчестеров (рис.1) и сказали, что здесь рабочие вперемешку с «убитыми», хочешь – выбирай, не хочешь – делай что хочешь. Но если разберёшься, как их использовать в качестве небольшого наждака для правки инструмента, расскажи. Ну, вот – рассказываю…

Первый HDD – «Quantum» семейства «Fireball TM» с микросхемой привода TDA5147AK (рис.2). Посмотрим, что он из себя представляет.

Верхняя крышка крепится 4-мя винтами по углам и одним винтом и гайкой, находящимися сверху, под наклейками. После снятия крышки видны сам жёсткий диск, считывающие головки и магнитная система управления положением головок (рис.3). Шлейф отсоединяем, магнитную систему откручиваем (здесь понадобиться специально заточенный шестигранный ключ «звёздочка»). При желании диск тоже можно снять, если открутить три винта на шпинделе двигателя (также нужен шестигранник).

Теперь ставим крышку на место для того, чтобы можно было перевернуть HDD для экспериментов с электроникой и подаём в разъём питания напряжения +5 В и +12В. Двигатель разгоняется, работает примерно 30 секунд, а затем останавливается (на печатной плате есть зелёный светодиод – он горит при вращении двигателя и мигает при его остановке).

В сети легко находится даташит на микросхему TDA5147K, но по нему не удалось разобраться с сигналом разрешения/запрета вращения. При «подтягивании» сигналов POR к шинам питания добиться нужной реакции не удалось, но при просмотре сигналов осциллографом выяснилось, что при касании щупом 7-го вывода микросхемы TDA5147АK происходит её сброс и перезапуск двигателя. Таким образом, собрав простейший генератор коротких импульсов (рис.4, нижнее фото) с периодом в несколько секунд (или десятков секунд), можно заставить двигатель вращаться более-менее постоянно. Возникающие паузы в подаче питания длятся около 0,5 секунды и это не критично, если двигатель используется с небольшой нагрузкой на валу, но в других случаях это может быть неприемлемо. Поэтому, способ хоть и действенный, но не совсем правильный. А «правильно» запустить его так и не удалось.

Следующий HDD – «Quantum» семейства «Trailblazer» (рис.5).

При подаче напряжений питания привод никаких признаков жизни не подаёт и на плате электроники начинает сильно греться микросхема 14-107540-03. В середине корпуса микросхемы заметна выпуклость (рис.6), что говорит о её явной неработоспособности. Обидно, но не страшно.

Поисковики даташит на неё не находят, но есть описание на HA13561F. Она выполнена в таком же корпусе, совпадает по ножкам питания и по «выходным» выводам с HA13555 (у последней к проводникам питания двигателя подпаяны диоды – защита от противо-ЭДС). Попробуем определиться с необходимыми выводами управления. Из даташита на HA13561F (рис.8) следует, что на вывод 42 (CLOCK) должна подаваться тактовая частота 5 МГц с уровнем TTL-логики и что сигналом, разрешающим запуск двигателя, является высокий уровень на выводе 44 (SPNENAB).

Так как микросхема 14-107540-03 нерабочая, то отрезаем питание +5 В от неё и от всех остальных микросхем, кроме HA13555 (рис.9). Тестером проверяем правильность «порезов» по отсутствию соединений.

На нижнем фото рисунка 9 красными точками показаны места подпайки напряжения +5 В для HA13555 и резистора «подтяжки к плюсу» её 44 вывода. Если же резистор от вывода 45 снять с родного места (это R105 по рисунку 8) и поставить его вертикально с некоторым наклоном к микросхеме, то дополнительный резистор для подтяжки к «плюсу» вывода 44 можно припаять к переходному отверстию и к висящему выводу первого резистора (рис.10) и тогда питание +5 В можно подавать в место их соединения.

На обратной стороне платы следует перерезать дорожки, как показано на рисунке 11. Это «бывшие» сигналы, приходящие от сгоревшей микросхемы 14-107540-03 и старая «подтяжка» резистора R105.

Организовать подачу «новых» тактовых сигналов на вывод 42 (CLOCK) можно с помощью дополнительного внешнего генератора, собранного на любой подходящей микросхеме. В данном случае была использована К555ЛН1 и получившаяся схема показана на рисунке 12.

После «прокидывания» проводом МГТФ напряжения питания +5 В прямо от разъёма к выводу 36 (Vss) и других требуемых соединений (рис.13), привод запускается и работает безостановочно. Естественно, если бы микросхема 14-107540-03 была исправна, вся доработка заключалась бы только в «перетяжке» 44-го вывода к шине +5 В.

Количество оборотов также зависит и от уровня напряжения на выводе 41 (CNTSEL). В даташите на микросхему HA13561F есть таблица и она соответствует значениям, получаемым у HA13555. В результате всех манипуляций удалось получить минимальную скорость вращения двигателя около 1800 об/мин, максимальную – 6864 об/мин. Контроль проводился с помощью программы SpectraPLUS, оптопары с усилителем и кусочка изоленты, приклеенного к диску так, чтобы он при вращении диска перекрывал окно оптопары (в окне анализатора спектра определялась частота следования импульсов и затем умножалась на 60).

Третий привод – «SAMSUNG WN310820A».

Поделки из нерабочих HDD — мини-помпа

Понадобилась мне как-то для будущих самоделок водяная помпа. Да не простая — с ограничениями по габаритам — толщина до 25мм, ширина до 50мм (длина — уже можно варьировать). Из желаемых характеристик — напор 1м и расход 100л/ч. Не найдя в продажах желаемого (в основном — по габаритам), по своей упоротойупорной натуре приступил к реализации своего решения данного вопроса!

«Мозги» и немного предыстории:

Но «из коробки» перенять опыт мне не удалось. Череда тестов с разными драйверами (MTD6501C, DRV11873 и ряда прочих китайских поделок) давали неутешительный итог: более крупные моторы от 3.5 дисков работают идеально. А вот с мелкими моторами в лучшем случае удается запустить единицы, и те работают крайне нестабильно. С таким неутешительным результатом давняя идея была заброшена и находилась на грани забвения.

Но относительно недавно наткнулся на довольно любопытный драйвер от TI — DRV10987. При своих скромных габаритах обладает довольно внушительным потенциалом:

Помог мне в этом самописный онлайн-конфигуратор настроек. Пользуйтесь на здоровье!)

Затем уже были заказаны в поднебесной более презентабельные платки:

После регистрации (ну вот так требуют) можете бесплатно скачать файлы проекта. Или сразу же заказать платы здесь.

О «пересадке сердца»

Осталось дело за малым — достать из корпуса HDD мотор, который кстати говоря, в 2.5 дисках (и в большинстве 3.5) является его неотъемлемой частью. Вкратце можно процесс описать известной фразой «Пилите, Шура, пилите!«:

Из фанеры изготавливается внешняя направляющая под коронку по металлу с креплением к корпусу диска. Для сохранности шлейф мотора приклеивается к его основанию, чтобы не был срезан коронкой

После высверливания получаем кругляшки с моторчиком. После обработки напильником получаем диаметр основания около 25мм.

Подготовка реципиента к трансплантации:

Мозги и сердце будущей помпы отлично ладят друг с другом и готовы обрести новое место обитания. Так что самое время подумать о корпусе и крыльчатке.

Так как нужно получить при малом рабочем объеме высокое давление, крыльчатку спроектировал с 7 лучами:

Печать на 3D принтере поликарбонатом
3D модель

Поликарбонат — вещь для корпуса отличная. Но печатать целый корпус им дорого. Куски толстых листов очень трудно найти да и фрезеровка не бесплатна (для меня). Зато у рекламщиков за спасибо можно выпросить обрезки от листов толщиной 4мм и 2мм. Так что корпус проектировался для последующего нарезания лазером деталей и их склейкой в единое целое без необходимости фрезеровки. Потребуется разве что высверливание отверстий под фитинги и гайки.

Вид 3D модели
3D модель

Набор деталей для склейки «топа» помпы. В местах сопряжения каналов притока и оттока срезаны грани

Тут хотелось бы сделать лирическое отступление и напомнить желающим повторить и не только, что дихлорэтан, которым проводилась склейка — содержит мало витаминов и вдыхать нужно больше довольно токсичное и летучее вещество. Работы с ним нужно проводить или на открытом воздухе или в хорошо вентилируемом помещении.

Стек деталей «топа» на сушке после склейки — верх-приток-сепаратор-крыльчатка-ротор. Аналогично склеивается основание для мотора (или изготовить из 6мм куска поликарбоната целиком)

После склейки высверливаются отверстия для фитинга — 8мм латунной трубки по насечкам на детали «сепаратор»

Старый добрый состав БФ-4 как по мне дает надежную склейку латуни и поликарбоната

Тем же клеем приклеивается основание мотора в нижней части помпы. В верхней части рассверливаются (не насквозь!) отверстия под вклейку гаек-заклепок М3. И на фото видна прокладка из тонкого силикона

Вот и пришла пора проверить в работе самоделку. Для этого был наскоро собран тестовый стенд. Так как Хабр читают дети серьезные разработчики, у которых внешний вид и состав стенда может вызвать приступы паники, ужаса и дезориентации, хотел его спрятать под спойлер… но надеюсь, всё обойдётся, и потом не говорите, что я вас, уважаемые читатели, не предупреждал!

Ардуинка подаёт управляющий сигнал PWM, коэффициент заполнения которого задается вручную переменным резистором, считывает значение конфигурационных регистров, а так же определяет скорость вращения как через внутренние регистры драйвера (RPMrg), так и по сигналу FG (RPMfg). Питание мотора — 12v

Запуск мотора без нагрузки. Регулировка оборотов и замер энергопотребления

С холостым ходом всё понятно — получили 13к оборотов при напряжении 12v и потреблении 0.16A. Но собиралась водяная помпа, а я тут воздух гоняю. Так что следующий этап — сопровождение домочадцев на улицу, дабы не мешались, и оккупация ванной комнаты!

По итогам замеров получилась вот такая таблица

Как итог — данная поделка целиком удовлетворяет моим требованиям. А в случае поломки, благодаря разборной конструкции и наличию в любых ремонтных мастерских / сервисных центрах ящиков с дохлыми 2.5HDD — починить не составит труда. И путь к дальнейшему построению СВО открыт! Так что продолжение следует!

Запустить мотор от жесткого диска

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Как запустить мотор от жесткого диска с тремя пинами без драйвера юзая только ардуинку да транзисторы?

Облазил все, везде говорят мол шим, или у них мотор с 4-мя контактами, у меня то с тремя.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Там стоит трёхфазный бесколлекторный мотор (BLDC). Работает путём переключения фаз по очереди, ищи в гугле.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Искал, и много. Почти везде мотор с 4-мя контактами, или драйвер.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Я конечно могу запустить мотор на очень низких оборотов от самой ардуинки, и запускал. Но это не дело. 2-3 оборота в секунду это мало. Мотор то 7200

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Искал, и много. Почти везде мотор с 4-мя контактами, или драйвер.

В жёстких дисках обычно такие и стоят. Там обмотка по схеме звезда (рис.1): один вывод общий и по одному выводу на каждую обмотку (всего четрые контакта). Есть ещё по схеме треугольник (рис.2), без общего вывода (всего три контакта)

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Я конечно могу запустить мотор на очень низких оборотов от самой ардуинки, и запускал. Но это не дело. 2-3 оборота в секунду это мало. Мотор то 7200

Ищи как подключать и управлять бесколлектроными моторами по схеме треугольник, если только три вывода.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Походу я ошибся. В моторе с тремя выводами обмотка также по схеме звезда, просто общий не выведен наружу.

Нужно шесть транзисторов, чтобы менять полярность на каждом выводе.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

. я пробовал, однако жд на полные обороты не выходил. Пробовал в тч и управлением напрямую портом. При этом не оставалось ничего для выполнения еще чего либо еще.

оптимальным стало приобретение самого дешевого регулятора для модельного бесколлекторника и управление им шимом, аналогично сервам. Типа этого

ЗЫ. Работает только для трехпиновых движков от НЖМД. Для четырехпинового непрокатилло. Пытался игнорировать средний пин , предполагая звезду. Непрокатилло.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Чтобы мотор вышел на полные обороты и стабильно работал, обязательно должна быть обратная связь (для считывания положения ротора). Иначе на больших оборотах или при резком разгоне мотор может «срываться». Особенно если приложить усилие к ротору, т.к. слабый крутящий момент.

ЗЫ. Работает только для трехпиновых движков от НЖМД. Для четырехпинового непрокатилло. Пытался игнорировать средний пин , предполагая звезду. Непрокатилло.

Странно конечно. По идее должно было заработать.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Ясно, а как дела обстоят с моторами от DVD ромов? На одном три пина, на другом 6, на третьем вообще пять. Через несколько дней будет l293d шилд. Им можно запустить? Или нафиг все это?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Да почти так же. Я встречал те же трехфазные бесколлекторные моторы. Кто-то говорил, что видел шаговый двигатель. Но там вроде датчики холла на плате уже стоят для обратной связи. Можно ещё глянуть мотор от флоппика.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Запускаем различные 3-фазные моторчики от драйвера мотора жесткого диска

В жестком диске,для раскрутки алюминиевого диска-накопителя информации,есть трехфазный бесколлекторный двигатель.

Этот двигатель управляется специальной микросхемой-драйвером мотора,на моей плате это микросхема L6278.К моторчику от платы идут четыре контакта.

У моторчика есть четыре вывода-контакта.Крайний вывод слева,это общий вывод,его можно определить как несколько скрученных проводков,все остальные выводы,это выводы фазы.

Решил убрать мотор из жесткого диска и на его место подключить другие электродвигатели.Первый попавшийся тоже имеет четыре вывода,при подключении запустился и вполне себе работает.

Также можно запустить и моторчик постоянного тока из детских игрушек.На три вывода от катушек,подключить три вывода фазы,общий провод драйвера ни куда не подключается.

Теперь корпус этого моторчика начинает вращаться.

Жесткие диски имеют разных производителей и модели.При подаче питания 5В,на моей модели моторчики запускаются на 5-10 секунд,далее останавливаются и снова запускаются.Чтобы вращение было постоянным,замкнул перемычкой два крайних контакта на плате,куда подключается шлейф.Замыкать надо при запуске,при выключении питания и вновь подаче питания,запуска мотора не будет,надо будет опять вытаскивать перемычку и запускать без нее.Возможно на других жестких дисках диск будет вращаться без проблем постоянно.

Так выглядит осциллограмма между двумя фазами во время работы двигателя.

Изготовление устройства

Схема устройства достаточно проста и не требует обязательного применения монтажной платы. С учетом ее рядной структуры в качестве силового несущего элемента может быть использована проволочная шина диаметром 1 – 2 мм, которая соединяется с плюсом источника питания. Общий вывод обмоток подключается на минус источника питания.

Подключается к трехфазному двигателю жесткого диска с общим проводом.

При сборке необходимо контролировать отсутствие коротких замыканий между отдельными неизолированными соединениями, при необходимости применяют кембрики.

Устройство при отсутствии ошибок в схеме начинает функционировать немедленно после подачи постоянного напряжения. Частоту вращения ротора двигателя можно менять заменой конденсаторов или резисторов, причем все устанавливаемые пассивные компоненты должны иметь одинаковый номинал.

Ротор электрогенератора И. Белицкого

представляет из себя железную ось. На ней закреплены 2 железных диска с расположенными на них неодимовыми магнитами. Между дисками на оси напрессована железная втулка. Ее длина зависит от толщины статора. Ее назначение – обеспечить минимальный зазор между вращающимися магнитами и катушками статора. В каждом диске по 12 неодимовых магнитов диаметром 15 и толщиной 5 мм. Для них сделаны на диске посадочные места.

Их нужно приклеить эпоксидной смолой или другим клеем. При этом необходимо строго соблюсти полярность. В собранном состоянии магниты должны располагаться так, чтобы напротив каждого находился другой с противоположного диска. При этом полюса должны быть разные навстречу друг другу. Как пишет сам автор разработки (Игорь Белецкий): “Правильно будет именно разными полюсами, что бы силовые линии выходили из одного входили в другой, однозначно S = N.” Приобрести неодимовые магниты можно в китайском интернет-магазине.

Видео: Подключение двигателя жесткого диска(HDD) без драйвера. (УСПЕШНЫЙ ЗАПУСК) Часть 2

Двигатель, подключенный по указанным схемам, будет разгоняться до тех пор, пока либо не наступит предел по частоте генерации VCO микросхемы, которая определяется номиналами конденсатора подключенного к выводу 27 (чем его ёмкость меньше, тем выше частота), либо двигатель не будет разрушен механически. Не следует слишком уменьшать ёмкость конденсатора подключенного к выводу 27, так как это может затруднить пуск двигателя. Регулировка скорости вращения производится изменением напряжения на выводе 2 микросхемы, соответственно: Vпит — максимальная скорость; 0 — двигатель остановлен. От автора имеется и печатка, но я развёл свой вариант, как более компактный.

Позже пришли заказанные мной микросхемы LB11880, запаял в две готовые платки и провёл тест одной из них. Всё прекрасно работает: скорость регулируется переменником, обороты определить трудно но думаю до 10000 есть точно, так как двигатель гудит прилично.

В общем, начало положено, буду думать куда применить. Есть мысль сделать из него такой же точильный диск как у автора. А сейчас тестировал на куске пластика, сделал типа вентилятора, дует просто зверски хоть на фото даже не видно как он крутится.

Видео: ❓Как запустить моторчик от жёсткого диска

МОДУЛЬ ДРАЙВЕРА МОТОРА BLDC

Эта статья предоставит важную теорию и полезные схемы драйверов двигателей жестких дисков, которые можно заставить крутиться с разной скоростью и разных направлениях, а уж где это использовать — решайте сами. Прежде всего обратите внимание, что обычный двигатель шпинделя жесткого диска (HDD) на самом деле является бездатчиковым трехфазным бесколлекторным двигателем постоянного тока BLDC.

Как следует из названия, в бесщеточном (бесколлекторном) двигателе щетки не используются. Бесщеточный двигатель преодолевает потребность в механическом коммутаторе, меняя настройку на обратную, то есть катушки становятся статором, а постоянные магниты становятся частью ротора. Вращение двигателя достигается за счет изменения направления магнитных полей, создаваемых неподвижными катушками. Поскольку ротор представляет собой постоянный магнит, ему не нужен ток, что устраняет необходимость в щетках и коммутаторе. Чтобы контролировать вращение можно регулировать величину и направление тока в этих неподвижных катушках извне.

Типичный бесколлекторный двигатель постоянного тока с тремя катушками на статоре будет иметь шесть проводов, но в большинстве конструкций три провода будут подключены внутри, а остальные три выходят наружу. Также обратите внимание, что трехфазный бесщеточный двигатель требует трех датчиков Холла для определения положения ротора. В зависимости от физического положения этих датчиков, существует два типа выходных сигналов — фазовый сдвиг 60 ° и фазовый сдвиг 120 °. Комбинируя сигналы трех датчиков Холла, можно определить точную последовательность электронной коммутации. Но в бессенсорном бесщеточном моторе сигналы обратной электродвижущей силы (BEMF) контролируются драйвером для коммутации сигнала вместо положения, определяемого датчиками Холла. Вот поперечное сечение трехфазного бесщеточного двигателя на изображении ниже.

Это 4-х проводный двигатель BLDC от жесткого диска. HDD BLDC имеет четыре соединительных провода вместо трех упомянутых проводов ABC (часто обозначаемых как UVW). И 4-х контактный двигатель BLDC — это обычный трехфазный двигатель BLDC с выведенным центральным отводом. Если у двигателя есть фазы сопротивлением по 1 Ом каждая, то он должен давать 1 Ом от центрального ответвления до каждой фазы, 2 Ом между фазами. Хотя некоторые драйверы двигателей BLDC используют центральный отвод для измерения BEMF для коммутации.

Существует два типа мотора BLDC. Первый имеет встроенные датчики Холла для определения положения ротора, а второй — бессенсорный — не имеет датчика. Коммутация бессенсорного типа обычно основана на BEMF, генерируемой в обмотках статора.

Как запустить двигатель HDD 4-х проводной

Так как можно управлять двигателем HDD BLDC? Чтобы вращать его, нужно контролировать направление и синхронизацию тока в катушках статора, но этот метод управления более сложен. В продаже доступен широкий спектр бессенсорных микросхем драйверов двигателей BLDC, например DRV10866, цена модуля вполне доступная в интернет-магазинах. Двигатель работает с ним довольно хорошо — правда крутящий момент невысокий, что не удивительно, учитывая вход от источника питания 5 В.

DRV10866 — довольно популярная микросхема драйвера трехфазного бесщеточного двигателя без датчиков, интегрированная с шестью МОП-транзисторами с пиковыми токами до 680 мА. Она также предлагает синхронное выпрямление с широтно-импульсной модуляцией (PWM) и бессенсорную запатентованную схему управления обратной ЭДС (BEMF). Но есть и другое решение — универсальная плата драйвера двигателя BLDC для жестких дисков. Плата может использоваться для управления как 3-проводными, так и 4-проводными трехфазными бесщеточными двигателями постоянного тока. Кроме того тут есть несколько полезных опций, таких как управление скоростью и направлением вращения двигателя.

Видео: Драйвер мотору не нужен. Запускаем HDD мотор

Описание платы драйвера двигателя

Контроллер платы драйвера бесщеточного двигателя 5 В — 12 В постоянного тока для двигателя жесткого диска.

  • Подходит для бесколлекторных моторов без датчика.
  • Защита от обратного напряжения
  • Защита от повышенного тока
  • Напряжение привода: 5-12 В
  • Рабочий ток: до 1,2 А
  • Диапазон скорости: 0-100%
  • Управление вращением: CW и CCW

Плата сконструирована так, что требуются проводные соединения только с двигателем и источником питания. Минимальное рекомендуемое Vin составляет 5 В, а максимальное — 12 В постоянного тока. Потенциометр встроенного регулятора меняет скорость двигателя. Кроме того, есть две перемычки для выбора 3-проводного / 4-проводного мотора и выбора прямого / обратного направления. Для нормальной работы все перемычки должны быть установлены. В общем вполне удобное решение для управления трехфазными бессенсорными бесщеточными двигателями.

Плата использует комбинацию стабилизатора напряжения с низким падением напряжения (LDO), микроконтроллера для генерации сигналов с широтно-импульсной модуляцией (PWM) для трехфазного бесщеточного двигателя BLDC. Основная часть — драйвер двигателя — это DRV11873, один трехфазный бессенсорный драйвер BLDC от Texas Instruments. Вот типичная схема включения DRV11873.

16-контактный микроконтроллер (U1) настроен для подачи сигнала ШИМ (чуть ниже 25 кГц) на DRV11873 (U2) с потенциометром (W1) для регулировки скорости мотора путем изменения рабочего цикла ШИМ. Выход сигнала ШИМ может быть отведен от точки пайки, как показано на следующем изображении. Встроенная перемычка P1 соединена с выводом FR DRV11873, так что по умолчанию вывод остается в низком состоянии для вращения вперед (при переставлении вывод поднимается по потенциалу, и двигатель вращается в обратном направлении).

Следующая перемычка P4, подключенная к контакту COM DRV11873, предназначена для выбора 3-проводного / 4-проводного привода. На плате припаяны три дополнительных резистора (R4-R5-R6) для создания виртуального центрального отвода / нейтральной точки (для получения последовательности коммутации) для реализации 3-проводного привода двигателя BLDC.

Если выбирать вариант «сделай сам», стоит отметить, что оба чипа TI (DRV10866 и DRV11873) не сложно собирать. Для упрощения в качестве генератора ШИМ было бы лучше взять таймер 555 как широтно-импульсный модулятор, способный выдавать выходной сигнал примерно 25 кГц с рабочим циклом, который может изменяться от 5% до 95%.

И вот еще одна плата, похожая на описанную, но с небольшими изменениями в компоновке деталей. Микросхема драйвера двигателя — DRV11873, микроконтроллер — STC15W404A, регулятор напряжения — HT7550-1.

В общем найти подходящий драйвер для двигателя жесткого диска или оптического привода вполне возможно, в продаже есть десятки вариантов модулей, просто нужно выбрать правильный.

Про использование технологии беспроводного питания различных устройств.

Переделываем игрушку обычный трактор в радиоуправляемый — фотографии процесса и получившийся результат.

Микрофоны MEMS — новое качество в записи звука. Подробное описание технологии.

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

Добавить комментарий